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A challenge for secondary mathematics teachers is to be able to design learning experiences so as to
manage the level of cognitive demand of lessons and tasks to ensure students will engage with these and
learn from the experience. A framework for engineering the cognitive demand of tasks, lessons, and
lesson sequences will be illustrated within the context of Year 9/10 using a teacher designed task
implemented during the year.

Introduction
According to Evans (1991),

One way of characterising teaching tasks is through the kind of cognitive demand [italics added] they
impose on the learner: whether these consist in the requirement of specific procedures elicited by
particular cues, recall of specific knowledge, development and application of structured conceptual
knowledge, or higher order procedures involving interpretation, transfer of rules to unfamiliar materials,
or the combination and modification of procedures. (pp. 125-126)

In the RITEMATHS project (HREF1) involving 6 secondary schools, the Universities of Melbourne and
Ballarat, and Texas Instruments, one aim is to develop guidelines for managing increased cognitive demand of
lessons where task contexts involve real-world applications in a technology rich learning environment. From a
teaching perspective the management of the cognitive demand of teaching tasks in such an environment can
be mediated through (a) task scaffolding, (b) task complexity and (c) complexity of technology use.

Mediators of Cognitive Demand: Task Scaffo lding
Task scaffolding can be described as “the degree of cognitive processing support that the task provides the
task solvers, enabling them to solve complex tasks that would be beyond their capability if they depended on
their own cognitive resources” (Stillman, 2001, p. 103). The degree of support a teacher may want to provide
for a task is related to its purpose and placement in a lesson sequence. Task scaffolding comes through the
structuring of the task, the type of technology chosen, and whether technological assistance rather than by-
hand calculation, is privileged by the task. It also comes from whose choice it is (task setter’s or task solver’s)
to make decisions about all of these when solving the task.

In tasks with high task scaffolding, the task setter structures the solution pathway by the way the task is
posed. This usually results in a reduction in the number of decision points the task solvers have to face and
resolve for themselves. Tasks with low scaffolding allow for student generated solutions where students make
their own assumptions, construct their own model of the situation and make event-driven decisions throughout
the solution attempt. When using tasks set in real-world contexts, these two extremes of the task scaffolding
continuum result in a continuum of observed modelling outcomes ranging from supplantive modelling where
the modelling structure is supplied by the task setter to generative modelling where the students generate the



modelling themselves (Figure 1). This suggests that if we believe student generated solutions are important in
the learning process then we need to be prepared to provide tasks low in scaffolding.
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Figure 1. Relationship between continua for task scaffolding and modelling outcomes for real world tasks.

Ideally, over the years of secondary schooling students should be able to progress along the continuum
from supplantive modelling towards generative modelling by being engaged in lessons where teaching,
learning, and assessment tasks of accessible, but increasing, levels of cognitive demand have been provided.
Within a year level, and even within a unit, teachers may endeavour to ensure there is some progress by
regulating the level of cognitive demand in lessons and in tasks used in lessons through a commensurate
reduction in the level of task scaffolding.

Mediators of Cognitive Demand: Task Complexity
The complexity of a real world task can be shown by identifying and assessing the level of those attributes of
the task that contribute to its overall complexity. The attributes of a task that contribute to its complexity are
potentially numerous (see Figure 2). They contribute to overall complexity via the mathematical, linguistic,
intellectual, representational, conceptual, or contextual complexities of the task. These subcategories of task
complexity have been refined and augmented by the first author (Stillman, 2002) using a grounded theory
approach based on Strauss and Corbin (1990) from categories used by Williams (2002). For each subcategory,
properties and their dimensional ranges have been identified. For example, one of the properties of linguistic
complexity is orientation of wording which can be mathematical, everyday, or technical. The level of overall
task complexity can vary along a continuum from simple to complex. For a particular task, both students and
teachers tend to focus on only a subset of attributes which act as indicative cues in assessing overall task
complexity. The attributes of a task that contribute to its complexity can be specified by answering relevant
questions from each subcategory shown in Figure 2.

Mediators of Cognitive Demand: Complex ity of Technology Use
The use of electronic technologies such as graphing and CAS calculators and image digitisers can reduce the
cognitive demand of tasks through supplementation and reorganisation of human thought by carrying out
routine arithmetic calculations, algebraic manipulations, graph sketching, acting as an external store of interim
results, or overlaying visual images within an interactive coordinate system to facilitate analysis. However,
the use of these technologies has the potential to bring in a degree of complexity as they transform classroom
activity and allow new forms of activity to occur. Regulation of this complexity allows teachers a further
opportunity to mediate the cognitive demand of lessons through the careful crafting of tasks for teaching,
learning, and assessment. In the RITEMATHS project two types of electronic technologies are being used in
real-world settings—analysis tools (e.g., the graphing calculator) and real-world interfaces (e.g., image
digitisers such as GridPic 1.2 , Visser, 2004) which bring a virtual world into the classroom for mathematical
exploration. Figure 3 provides a preliminary list of questions that could be considered in relation to
technology use to inform decisions the regulation of cognitive demand over time.



TASK COMPLEXITY
General Attributes Dimensional Ranges
LEVEL OF COMPLEXITY simple...complex

CONCEPTUAL COMPLEXITY
What is the complexity of the concepts involved? basic…abstract
Concepts from how many topic areas are involved? 1...many
Where are these concepts in terms of pedagogical development? early...complete

MATHEMATICAL COMPLEXITY
How many techniques are involved? 1...many
What degree of rehearsal of required techniques has there been? cursorily treated...well rehearsed
How obscure is the choice of techniques? fairly obvious...quite obscure
How complex is each technique? quite simple...quite complex
How complex is the combination of techniques? all quite simple...most quite complex
What type(s) of combination of techniques is involved? conjunction, composition, inverse
How visible are the links between techniques? fairly apparent...quite obscure
How many steps are involved? 1...many
What is the length of solution? short...long
How familiar is the problem type? familiar...unfamiliar
What type of problem is it? direct taught, reverse taught, direct novel, reverse

novel
What type of application is it? procedural...true application
What amount of mathematical information is given? Sufficient only...information must be imported
How many mathematical topic areas are involved? 1...many   

LINGUISTIC COMPLEXITY
What amount of guidance is given? none...high
What is the complexity of vocabulary used? simple...complex
What is the complexity of sentence structure used? simple...complex
What amount of information is given in written form? a little...a lot
How familiar is the wording? familiar...unfamiliar
What amount of reading is involved? a little...a lot
What is the orientation of wording used? mathematical, everyday, technical
What format was used? point form, 1 paragraph, several paragraphs
What is the relevance of information given? all relevant, extra information

INTELLECTUAL COMPLEXITY
Is analysis required? no, yes
Is synthesis required? no, yes
How much decision making is necessary? none...a lot
What amount of thinking is required? little...a lot
What is the level of challenge of the task? straightforward...perplexing
How many steps are integrated involving mental co-ordination? few...many

REPRESENTATIONAL COMPLEXITY
How many visual representations are given? 1...many
What type of visual representation(s) are given? none, diagram, graph
Can the task be represented in a diagram/graph? yes, no
How difficult is it to draw the diagram/graph? easy...hard

CONTEXTUAL COMPLEXITY
How familiar is the task context? familiar...totally unfamiliar
How obscure is the mathematical formulation? obvious...quite obscure
What type of real-world task is it? application...modelling task
What level of contextualisation is used? border...tapestry
What amount of contextual info is there to process & integrate? a little...a lot
How are assumptions for model formulation specified? all given...all made by student
What is the nature of the reality of the task context? contrived...real life

Figure 2. Attributes and dimensions of Task Complexity.



COMPLEXITY OF TECHNOLOGY USE
General Attributes Dimensional Ranges
LEVEL OF COMPLEXITY simple...complex
Specific Attributes

How many electronic technologies are involved ? 1...many
How are these technologies used? analysis tool, real-world interface
How much technological knowledge is required? little...a lot
How easy is the technology to use? easy...very difficult
How obscure is the choice of techniques? fairly obvious...quite obscure
How complex is each technique? quite simple...quite complex
How complex is the combination of techniques? all quite simple...most quite complex
How visible are the links between techniques? fairly apparent...quite obscure
How many steps are involved? 1...many
How many features of the technology are involved? 1...many
What amount of guidance is given? none...high
How much decision making is necessary? none...a lot
How many representations can the technology provide? 1...many

Figure 3. Attributes and dimensions of Complexity of Calculator Use.

An Example
The task, Cunning Running (see Appendix), will be used to illustrate how these theoretical ideas can be
applied in practice. This task addresses modelling of variation using Pythagoras’ Theorem and is intended for
students in Years 9 or 10. The main task is designed for 2 class periods (100 minutes) plus homework. There
is a further fifty minute extension lesson. It is assumed that students know how to calculate the lengths of
sides of right angle triangles, given 2 known lengths.

This task involves the investigation of position on a base line of the point where the shortest path occurs.
Parameters in the investigation are:

1. Gate positions from the base station line
2. Station positions on the base line.

The investigation requires scale diagrams, numerical and graphical analysis, with the algebraic equation of the model

being derived from the by-hand calculation procedures used to calculate the path length.

The Lesson Sequence

In the first lesson, as a precursor to the task, students are taken to the gym where a rope is attached to two
points on opposite walls (simulating Gate 1 and Gate 2 in task diagram) and stretched to touch the corner of a
base line (Corner A in task diagram). A student takes the rope at Corner A, to see how far she or he can
continue to touch the wall with the rope. Is there any slack in the rope? Prior to the procedure being repeated
with Corner B, teams of students are asked to mark the position where the rope will reach and where the point
will be that allows the greatest slack in the rope. After this practical activity, the task is introduced. Discussion
of the meaning of total minimum run length ensues after students have completed their scale plans of a field
with 2 gates and 18 check stations. After four by-hand computations of distances for particular stations, the
results for the remaining 14 stations are calculated by using the LISTs of a graphing calculator (or a
spreadsheet) using the formulae that are the algebraic generalisations of the by-hand calculations.

The second lesson is the investigation of the minimum path length, using the graph of distance from the
corner of the field to the stations versus total run length. Class discussion focuses on the minimum length and
information contained in the shape of the graph. The equation of the graph is investigated. The algebraic
model is constructed from the concatenation of the by-hand steps. The curve for this equation is drawn on the
scatter plot.



The activities for the extension lesson involve investigations using dynamic geometry software (e.g., a
Cabri applet). In this investigation the positions of the stations and both gates can be considered to vary.

1. What happens to the position of the station for a minimum total run length as Gate 1 distance from A
– Gate 2 distance from B approaches zero?

2. If the ratio of Gate1 distance from A: Gate 2 distance from B remains the same, even though the
actual distances change, does the position of the minimum station change?

3. At the minimum run length situations compare the lengths
a. Gate 1 distance from A: Gate 2 distance from B
b. Hypotenuse 1: Hypotenuse 2
c. Distance 1: Distance 2

4. Introduction to trigonometric ratios: for the minimum total length positions, compare the ratios Gate 1
distance from A: hypotenuse 1 and Gate 2 distance from B: hypotenuse 2. Other ratios may also be
considered.

Mediating Cognitive Demand

The lesson sequence came at the end of a unit on Pythagoras’ Theorem in term 1, Year 9, and served as both
the culmination of this unit and the lead into the next unit on trigonometrical ratios (lesson 3). The task
scaffolding in lessons 1 and 2 is relatively high but not unreasonable for students at this stage of their
mathematical development. In particular, tight control is kept over the decision making by the task setter.
There is only the choice of technology. In the task description there is little scaffolding of the technical
aspects for using the selected technology. For example, if the graphing calculator was chosen as in the version
of the task in the appendix, specific features to be used include: LIST of values and Operation on List Values,
Graph Display (Plot, Trace, Window), Graph Equation (Y=), and minimum value of the function by use of the
TABLE. The omission of written scaffolding is indicative of the level of facility with their calculators that
could be assumed for the students in the particular classes. More scaffolding could be provided through
demonstration or peer interaction if teachers found this was warranted where students were not at this level of
expertise. This would ensure that the cognitive demand of the task was not increased by technology use in
such circumstances. Such scaffolding could apply to particular students or the whole class.

The task itself could potentially be quite high in cognitive demand for Year 9 due to overall task
complexity. It is a genuine modelling task from a familiar real experience for students at this school.
However, the approach taken is towards the supplantive end of the modelling continuum. There are many
steps involved but students are provided with guidance in the mathematical formulation of the task, choosing
techniques to use, the combination of these techniques, and the representations to use at various stages in the
solution. In addition, only sufficient mathematical information is given and all assumptions are stated. The
task statement is two pages consiting of both text and a diagram. Potential problems with linguistic
complexity are mediated through class discussion of the meanings of terms such as minimum run length and
through connections with the visual mental images the students would have from the gym activity.

This task could obviously be used at higher levels of schooling when students have much longer experience
with the mathematical concepts and techniques involved but it would then be expected that the approach
would be much more towards generative modelling. The mathematical and graphing calculator techniques, for
these students, should be well rehearsed and automated thus reducing the cognitive demand coming from task
complexity and technology use. So in order to keep the level of challenge appropriate, the explicit scaffolding
in the current task statement should be deliberately reduced or totally withdrawn to allow students to generate
their own solution pathway where they make their own decisions.



Conclusion
Providing the appropriate cognitive demand for students is not a simple task, be it across a year level or within
a particular learning activity. The framework presented here details three opportunities teachers have for
mediating the demand of real world tasks in technologically rich learning environments. By carefully
orchestrating the interplay between degree of task scaffolding, task complexity, and complexity of technology
use, teachers are able to craft lesson sequences involving tasks of appropriate levels of challenge for their
students. The example presented here illustrates how a teacher has been able to carefully regulate the
cognitive demand of his lessons in order to maximise favourable outcomes for his students. This regulation
occurred through careful task and lesson scaffolding to mediate the potential complexity of the task and
technology use.
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Appendix

ORIENTEERING - Cunning Running

In the Annual “KING OF THE COLLEGE” Orienteering event, competitors are asked to choose a course that
will allow them to RUN THE SHORTEST POSSIBLE DISTANCE, while still visiting a prescribed number
of CHECK POINT STATIONS.
In one stage of the race, the runners enter the top gate of a field, F, and leave by the bottom gate, L. During
the race across the field, they must go to one of the stations on the bottom fence. There is one station per
competitor. Runners claim a station by reaching there first. They remove the ribbon on the station to say it has
been used, and other runners need to go elsewhere. Your task is to examine the distances that the runners take
in going from THE TOP GATE to the BOTTOM GATE via a station.
YOU WILL SHOW HOW THE DISTANCE CHANGES DEPENDING ON THE STATION TO WHICH YOU HAVE TO SELECT TO RUN.

There are 18 stations along the fence line at 10 metre intervals.
The station closest to Corner A is 50 metres from Corner A.
The distances of the gates from the fence with the stations are marked on the map.

THE TASK
Investigate the changes in the total path length travelled as the runner goes from Gate 1 to Gate 2 after visiting
one of the check point stations. To which station would the runner travel, if he/she wished to travel the
shortest path length?

THE DIAGRAM – THE SCALED PLAN

Draw a scaled plan diagram of the section of the orienteering course (use graph paper). Scale is 1 cm to 10
metres.

You will need to mark the position of variables on the plan:
Distance 1, the distance from corner A to the stations,
Distance 2 is the remaining length on the base line, after Distance 1 is marked.



THE CALCULATIONS

Find the total distance a runner travels.

For the station on the base line closest to Corner A,
Use Pythagoras’ Theorem, to calculate the distance a runner travels going from the Gate 1 to the first
station (the one closest to Corner A)
Calculate the distance a runner travels in going from the first station to Gate 2.
Calculate the total path length for the runner going Gate 1 – Station 1 – Gate 2.
Compare your result with that obtained from measurement of the path on the scaled diagram.

Repeat the calculations for the runner going to Station 2 and then repeat the calculations for the runners going
to Station 3 and Station 4.

Does running via Station 1, or Station 2, or Station 3 make any difference to the overall length of the run?

MODEL FOR THE CALCULATIONS

List the sequence of mathematical steps (method of calculation) for finding the total distance a runner travels
through the field.

THE LIST OF RESULTS OF TOTAL RUN DISTANCE

Use the Lists in your calculator to find the total distance across the field as 18 runners in the event go to one
of the stations. Enter appropriate formulae to calculate the paths via each station. Record your results in a
table, similar to the following.

Station Number Distance from Corner A Top Gate to Station
Distance

Station to Bottom Gate
Distance

Total Distance

1
2
3
4
And so on to 18

GRAPH

Draw a graph that shows how the total run distance you run changes as you travel to the different stations (that
is, as Distance 1 increases).
Observe the graph, then answer these questions:

1. What shape is the graph? Does the graph look like a straight line?
2. Where is the station that has the shortest run total distance?
3. Could a 19th station be entered into the base line to achieve a smaller total run distance? Where would

the position of the 19th station be?
4. Does the total distance run change at the same rate as you travel via station 1, or 2, or 3, or 4, …?
5. If you were the sixth runner to reach Gate 1, to which station would you probably need to travel?

THE ALGEBRA

What is the algebraic equation that represents the graph pattern?
Plot this graph of this equation on your graph of the points.
If you could put in a 19th station where would you put the station, and why?


